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F x( )  Polynomial matrix of x
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λ  Proportional control factor.
( )

min
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kf  Finite element value of optimal design in kth itera-
tion.

ε  Precision.

d  Euclidean metric.

cp  Operator of selective probability.

mp  Operator of mutation probability.
j  Number of structural function 

( )jg x  The jth structural function.
[ ( ) 0]jP g x >  Probability of reliability of jth structural function.

[ ]rP  Allowable probability of reliability.
[ ( )]β j x  Reliability index of j-th structural function.
[ ]β  Allowable reliability index

( )f x  Objective function.
( )p x  Penalty function.
( )f x  Objective satisfaction function.
( )p x  Constraint satisfaction function.

ρ  Proportion of feasible solution.
t  Number of iterations.
α  Adjustable factor.
r( )ρ  Adaptive dynamic penalty factor.
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1. Introduction
With the development of research in the field of structural reliabil-

ity in China, the application of reliability-based design optimization 
(RBDO) has become increasingly prominent. RBDO can give a more 
secure and reliable design scheme than traditional design optimization 
methods while fully considering the random uncertainty of design pa-
rameters. This optimization method can improve the accuracy of the 
optimization results and obtain obvious economic benefits [17, 2, 31]. 
Therefore, there is a great significance to study the RBDO and its 
application.

Uncertainty exists at any stage in the design, manufacture, and op-
eration of engineering systems [26, 15, 16]. Guaranteeing the reliabil-
ity of the system under uncertainty is an important issue that needs to 
be concerned in RBDO. The surrogate model technology is applied 
to construct the performance function or optimize objective function 
under the approximate reliability constraints. This technology can re-
duce the computation cost and improve the efficiency of the design 
optimization. Aiming at this research field, Yu et al. [28] used the 
quadratic polynomial response surface (PRS) model to establish an 
approximate performance function model of the wing structure, and 
the RBDO model as the constraint function is established by using 
the reliability of the maximum stress and the maximum displacement. 
The fmincon function in the MATLAB optimization toolbox is ap-
plied to solve the lightweight problem of the wing structure. Ozcanan 
et al. [23] used radial basis function (RBF)-based metamodels of the 
roadside safety equipment based on data obtained by the crash test 
simulation and the RBF approximation model is optimized by using 
the multi-objective genetic algorithm. Zhou et al. [32] proposed an 
improved quadratic PRS model to replace the performance function 
of the ablation life of fast-fire weapon, and finished the RBDO of the 
body tube ablation life. Bahman et al. [1] proposed a four-bar mecha-
nisms optimization method based on game theory and data processing 
artificial neural network (ANN) grouping method which is also uti-
lized to construct an approximate model for the rational reaction set of 
the followers, and the mechanism optimization is realized by adopting 
the neural network. Zhang et al. [30] proposed a design idea of com-
bining Kriging model with first-order reliability calculation method. 
The optimal results are successfully obtained when they applied it 
to reliability-based crashworthiness design optimization research of 
aluminum foam filled structure. Although PRS, PBF, ANN and Krig-
ing models can be used to express the functional relationship between 
optimization variables and their responses, they all have some short-
comings. PRS is the only explicit surrogate model, which can not only 
accurately obtain the functional relationship between the optimization 
variables and the response values, but also facilitate the optimization 
by using the optimization algorithm. However, the fitting accuracy of 
strong nonlinear function is poor. RBF, ANN and Kriging have high 
fitting accuracy for functions with high nonlinear, but it is easy to fall 
into local optimal solution and difficulty in convergence. Among these 
methods, in view of Kriging model has the advantages of improving 
the quantitative evaluation accuracy of prediction model and the few 
modeling parameters, this paper improves the traditional model in or-
der to improve the accuracy of RBDO.

To this end, a multi-point addition strategy based on a Kriging 
surrogate model and RBDO method based on multi-level surrogate 
model are proposed after he objective function optimization and reli-
ability constraints is deeply analyzed. The efficiency of the method 
is next verified by some cases. The rests of this study are organized 
as follows: the traditional Kriging model is introduced in section 2. 
Following this, section 3 proposed a genetic-algorithm-based Krig-
ing surrogate model using multi-point addition sequence optimiza-
tion strategy and section 4 presented multi-level objective surrogate 
optimization method. A multi-level surrogate model based reliability 
design optimization method is studied in section 5. Finally, conclu-
sions are given in section 6.

2. Kriging Surrogate Model
Kriging surrogate model is a kind of local interpolation method 

to estimate the unbiased optimal value of variables in a limited area. 
It predicts at a certain point depends on the information of known 
variables around this point, that is, the unknown information of this 
point is estimated by the linear combination of weighted information 
within a certain range of this point [12, 22, 21]. Thus, it is also called 
optimal linear unbiased estimation and the mathematical function of 
Kriging surrogate model is expressed as an equation, the equation can 
be given by:

 y x F x z x f x z xT( ) = ( ) + ( ) = ( ) + ( )ξ ξ,  (1)

where ξ  is the regression coefficient; ( )F x  is the polynomial matrix 
of x; ( )z x  is the error of spatial correlation random distribution, and 
its covariance can be provided by:

 
cov[ ( ), ( )] [ ( , , )]z x z x R x xi j z i j=σ θ2  (2)

where ix  and jx  are any two points in the training samples; σ z
2  is 

the variance of randomly distributed errors; R x xi j( , , )θ  is the spatial 
correlation between training samples, which is expressed as follows:

 R x x R d d x xi j k
k

m
k k k i

k
j
k( , , ) ( , ),θ θ= = −

=
∏

1
 (3)

3. Genetic-algorithm-based kriging surrogate model 
using multi-point addition sequence optimization 
strategy

3.1. Kriging-based sequence optimization

The Kriging surrogate model has good global approximation abil-
ity. Using Kriging surrogate model to fit the objective function of 
structural performance can better reflect the real model functional 
relationship. Common optimization methods of Kriging surrogate 
model include “one-step” design optimization and sequence iterative 
optimization design [33, 8].

The “one-step” design optimization is a method of selecting a cer-
tain number of training samples in the design variable space through 
the experimental design method. The Kriging surrogate model is con-
structed by using the training samples and their response values. And 
then perform the accuracy test on the model. The directly design op-
timization is applied on the Kriging surrogate model when the model 
meets the accuracy requirements.

Sequence iterative design optimization is a method that considers 
the prediction uncertainty and predicted values to increase the sample 
and improve the fitting accuracy of the model to perform sequence it-
erative optimization [18, 34, 5]. The optimization process is shown in 
Fig. 1. The second method achieves the purpose of improving the fit-
ting accuracy of the Kriging model and the accuracy of the optimiza-
tion result in the sequence iterative process. Compared with the Krig-
ing model in the one-step optimization design, the sequence iterative 
optimization design reduces the dependence on the initial sample.

3.2. Kriging-based multi-point addition criterion

Kriging surrogate model is an interpolation approximation method. 
It can not only give the response value of the predicted point, but 
also give the variance of the predicted value. If there are few number 
of sample points in the region near a predicted point, the variance 
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obtained by calculating the prediction point through Kriging model 
is large. This variance carries the uncertainty information of the pre-
dicted point, or it can be considered that the sample near the point is 
sparse. If the variance of the predicted points is large, the uncertainty 
of the predicted values is higher [24, 9]. Therefore, in the view of the 
shortcomings of the above single-point criterion, this paper proposes 
a multi-point addition criterion based on the Kriging surrogate model. 
In other words, adding some sample points near the prediction point 
to improve the fitting accuracy of the model. The adding point cri-
terion can not only keep the current optimal design and explore the 
areas with large uncertainties, but also can capture the change trend of 
the optimization target in time under current optimal design.

“Multi-point addition” refers to adding several new sample points 
in each sequence iterative optimization process. The new sample li-
brary contains the initial sample points, the current optimal design 
points, and the points with larger variances of Kriging prediction 
values. The current optimal design point is similar to the optimal in-
sertion criterion that is obtained by the Kriging-based optimization 
algorithm to preserve the optimal design result of each iteration, es-
pecially to prevent the loss of global information when the current 
optimal design point is close to the real globally optimal points [11, 
20]. Regarding the selection method of the larger prediction variance, 
firstly the candidate sample set of the selected points is generated in 
the design space. And then the variance of the corresponding pre-
dicted value is calculated according to the current Kriging surrogate 
model. If the prediction variance of a certain point is greater than the 
predetermined threshold, the point is treated as a point with the large 
variance. Otherwise, the point is discarded. The prediction variance 
can be described as follows:

 2( ) 2( )
maxˆ ˆ( ) , 1,2,...,nk k

ix kσ λσ> =  (4)

where ix  is any sample point in the given candidate sample set; 2( )
maxˆ kσ  

is the maximum prediction variance in the candidate sample set at the 
k-th iteration; λ  is a selection ratio control factor. The value of λ  
determines the number of new points.

Fig. 2 is a schematic diagram of selecting the larger variance. The 
black hollow points in the Fig. 2 constitute the candidate sample set 
in the design space. The new sample points are selected by comparing 

the calculated variance of the predicted value with the predetermined 
threshold. The point newly added is the design point corresponding 
to the four black hollow points above the dotted line in the Fig. 2, 
where the arrow points to the position in the actual function curve and 
is marked as a red hollow point. If the value of λ  is large, the dot-
ted line moves up, so the number of points that can be selected will 
decrease. Otherwise, the number of points will increase. In addition, it 
can be seen from Fig. 2 that the four new sample points fill well with 
the regions that the initial samples are not covered, and optimization 
algorithm is guided to search in the region with lacking the sample 
information. Point 1 is located near the region with the highest un-
certainty. Adding point 1 indicates that the iteration is performing a 
global search; if point 3 is considered to be the current optimal design 
point, points 2 and 4 are located near the current optimal design point. 
Adding points 2 and 4 indicates that the iteration is performing a local 
search.

3.3. Genetic-algorithm-based Kriging model using multi-
point addition sequence optimization strategy

The optimization algorithm is crucial in the sequence iterative 
optimization. Under the premise of a certain kind of point addition 
criterion, it can search for the update points needed for the surrogate 
model reconstruction during the iterative process, which can improve 
the fitting accuracy of the surrogate model. In the sequence optimi-
zation of the Kriging surrogate model, the optimization target is to 
construct surrogate model by Kriging interpolation technique. Com-
pared with the actual engineering simulation model, the time cost for 
optimization is greatly reduced by the optimization algorithm of sur-
rogate model. In the view of the powerfully global search capability 
of genetic algorithm, the process is much simple without too many 
mathematical requirements [27, 7]. Therefore, the genetic algorithm 
is applied to optimization based on sections 3.1 and 3.2. The optimiza-
tion design process is shown in Fig. 3, and the steps are as follows:

Select the encoding method to generate the initial population 1) 
P(t).
The initial training sample is generated in the design space by 2) 
uniform design, and the real response value of the sample is 
obtained through finite element analysis of structure.

Fig. 1. The flow chart of sequential optimization based on Kriging model

Fig. 2. Infill criteria based on Kriging prediction
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Establish a Kriging surrogate model for the objective function 3) 
of the RBDO.
The fitness value (objective function value) of each individual 4) 
in the population can be get by the Kriging prediction.
Form the progeny population P(t+1) by selecting, intersecting, 5) 
and mutating on the individuals in the population. And select 
the optimal individuals according to the order of fitness.
Obtain the current optimal individual as well as the real model 6) 
response value of optimal design point through the finite ele-
ment analysis.
Determine whether the convergence criterion is met. If the 7) 
convergence criterion is met, stop the optimization and get the 
optimal design; otherwise, put the current optimal design into 
the sample set and turn to the next step. The two convergence 
criteria which are used as follows:

 
( ) ( 1)

min min
( 1)

min

ˆ ˆ
ˆ

k k

k
f - f

f
ε

−

− ≤  (5)

 
( ) ( 1)

min min
( 1)

min

ˆ k k

k
f - f

f
ε

−

− ≤  (6)

where ε  usually equates 0.001; ( )kf and ( )ˆ kf  respectively represent 
the finite element analysis values of the k-th iteration optimization 
and the Kriging surrogate model prediction values of the k-th iteration 
optimization.

Eq. (5) is the accuracy requirement for the optimal solution, and 
Eq. (6) is the global requirement for the optimal solution. Meeting 
both two convergence criteria at the same time can ensure that the 
optimal solution is the globally accurate optimal solution. Eq. (6) can 
be used directly when the global requirements for the optimal solution 
are not too high.

Use the MC method to generate the candidate sample set in the 8) 
design space, and determine whether the prediction variance of 
each sample by Kriging exceeds the set threshold 2( )ˆ kλσ . If 
the maximum value of the predicted variance does not exceed 
the threshold, then directly return to step (3); otherwise, the 
sample points whose predicted variance exceeds the thresh-
old are regarded as points with larger variance, and the larger 
points of these variances constitute the initial set of newly 
added samples. Then delete the related point and leave the un-
related points to the sample library. Return to step (3) until the 
convergence criterion is met.

3.4. Numerical cases analysis

The common test function is used to analyze the effects of the 
initial λ  and the candidate sample sets d  on the optimization re-
sults. These two parameters determine the number of newly added 
samples, where the parameters λ  control the number of initial new 
samples, and the value is set to [ ]0.5,0.6,0.7,0.8,0.9 ; the parameter
d  involves the deletion of the information related point, which is set 
to [ ]0.001,0.005,0.01,0.1,0.5 . The 5 ( 1,2,...,6)n n =  uniform design 
is adapted to select the initial sample, and the number of candidate 
sample sets produced by MC method is 25 ( 1,2,...,5)n n = .

The main analysis is about how different parameters combinations 
and the number of initial samples and candidate sample influence the 
optimization efficiency and the optimal solution accuracy. During the 
analysis, the evaluation criterion of the optimization efficiency is the 
number of original function operations SN . The accuracy evalua-
tion involves relative error, absolute error and root mean square error 
(RMSE). Table 1 gives related parameter settings.

The Ackley’s Path function is superimposed by the enlarged cosine 
function and the exponential function. The specific expression is as 
follows:

 Min f e e e
x m x mi

i

m
i

i

m

= −
∑

−
∑

+ +
−

= =20 20
0 2 22

1 1
. / cos( )/π  (7)

where m  is variable dimension. When 2m = , variable value range:
1 22 , 2x x− ≤ ≤ .

Ackley’s Path function is shown in Fig. 4. It can be seen from Fig. 
4(a) that the Ackley’s Path function is a multi-peak, multi-extreme 
function, and the gradient at the peak is larger. But it is difficult to 
capture the trend of the function value using the gradient optimiza-
tion algorithm. There is a globally optimal solution (0,0,...,0) 0f =  
of the optimization problem, as shown by the five-pointed asterisk in 
Fig. 4(b). It can be seen that there are eight locally optimal solutions 
near the optimal solution, marked as “*”. And as the range of vari-
able values expands, the number of local optimal solutions increases 
accordingly.

Uniform design is a deterministic experimental design, and the 
only thing that is known for sure is that the initial training sample is 
generated by the uniform design. Due to the randomness of the MC Fig. 3. Optimization flowchart for multi-point addition criterion of Kriging 

model based on genetic algorithm

Table 1. Parameter setting

Parameter Setting

Initial population 50

Selection probability cp 0.95

Mutation probability mp 0.001

ε 0.001
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method, the generated candidate sample may be good or bad, which 
will bring randomness to the optimization results [6]. In order to avoid 
the randomness, 50 groups of random optimization designs are per-
formed, and the average value of these 50 groups is selected as the 
final result. In addition, in order to analyze the effect of the parameter 
settings optimization results, the results corresponding to the number 
of the different initial sample and the candidate sample are averaged. 
Meanwhile, the results corresponding to the different parameter com-
binations are averaged to analyze the results of the number of initial 
sample and the number of candidate sample sets on the optimization 
results. Since the globally optimal value is zero, the absolute error 
is applied instead of the relative error in the analysis for accuracy 
evaluation.

Table 2 shows the optimal solutions obtained by running the op-
timization designs 50 times with different initial sample numbers. It 
can be seen from the table that with the increase of the number of 
initial samples, the running number of the original function increases 
slightly, but the amplitude of increase is not obvious, and the average 
value of the optimization results is continuously increasing. When the 
number of initial sample is increased to 15, the optimal value, abso-
lute error and RMSE have a significant reduction trend, and there is 
only little effect when continue to increase the number of sample. The 
standard deviation does not show obvious changes and it is generally 
at a lower level, which indicates that the optimization method is less 
dependent on the initial sample.

The 50 groups of optimal solutions with different numbers of the 
candidate sample groups are counted to obtain box plots of absolute 
error and root mean square error, and it is shown in Fig. 5 and Fig. 6. 
The shorter length of the rectangular box indicates that the data distri-
bution is more concentrated and has strong robustness (weak depend-

ence for the number of the candidate sample groups). The red hori-
zontal line in the box represents the mean value. The closer to zero, 
the more accurate the optimization result is. Considering the overall 
trend, as the number of the candidate sample groups increases, the ac-
curacy is continuously improving. When the number of the candidate 
sample groups gets to 100, the optimization result tends to be stable.

Fig. 7 and Fig. 8 show the number of the original function applica-
tions NS and the absolute error of the optimization result for different 
parameter settings. It can be seen that the value of NS increases with 
the value of λ  increases and decreases with the value of d  increases. 
If the value of λ  is larger, the number of initial new sample points 
will be reduced after the larger variance judgment predicted by Krig-
ing surrogate model. If the value of d  is larger, the range of the cor-
relation determination fields will be expanded, and the number of the 
points falling into the decision domain will increase. Thus, the smaller 
value of λ  and d  will reduce the number of new sample and func-
tion runs.

For the accuracy of optimization results, the smaller the λ  , the 
higher the accuracy from the overall trend, which means that the 
smaller λ  the more number of points can be put into the sample li-
brary, so that the fitting accuracy of the Kriging surrogate model can 
be improved to make optimization result closer to the globally optimal 
solution of the real function. In addition, when the different value of 
λ  is taken, the influence trend of d  is different. When the λ < 0 7. , 
the influence of d  on accuracy is little, while when the λ ≥ 0 7. , the 
influence of d  on accuracy is much larger, but has no rules to follow. 
If the requirement of the globally optimal solution is not very high, the 
λ  can be taken as 0.7 to ensure the accuracy and reduce the number 
of function runs and improve efficiency.

Table 2. Optimization results under different initial sample numbers

Uniform design SN Worst Optimal Average Standard deviation Absolute error RMSE

5P 63 0.523 0.023 0.028 0.026 0.028 0.455

10P 65 0.197 0.017 0.023 0.017 0.023 0.212

15P 66 0.068 0.004 0.020 0.022 0.020 0.039

20P 66 0.059 0.003 0.016 0.018 0.016 0.033

25P 68 0.062 0.003 0.012 0.011 0.012 0.056

30P 71 0.055 0.003 0.012 0.013 0.012 0.062

(a) Surface graph of Ackley’s Path (b) Contour plot of Ackley’s Path

Fig. 4. Ackley’s Path test function
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4. Multi-level Objective Surrogate Optimization Meth-
od

According to the genetic-algorithm-based Kriging surrogate model 
multi-point addition sequence optimization method proposed in sec-
tion 3, the globality of optimization is strengthened by the choice of 
surrogate model, multi-point addition strategy and optimization algo-
rithm. But this method does not consider the performance of the local 
search. In order to improve it, a multi-level surrogate model worked 
by global and local surrogate is presented. The flow chart of the multi-
level surrogate model is shown in Fig. 9. 

The first-level surrogate model is the Kriging globally surrogate 
model, the second-level surrogate model is the locally surrogate mod-
el. The detailed process is as follows. First, the genetic algorithm is 
used to optimize the Kriging globally surrogate model and obtain the 
globally optimal design points. Second, judge whether the conver-
gence criterion is satisfied. If it is not satisfied, a locally surrogate 
model is established near the globally optimal design point (within 
3σ ), and the locally optimal design point of this iteration is obtained 
by the sequential quadratic programming method. Third, put the cur-
rent globally, locally optimal design point and the real response into 
the sample library. Finally, delete the related point, and update the 
Kriging globally surrogate model until the convergence criterion is 
satisfied.

The locally surrogate model needs to have good local approxima-
tion ability to fit the objective function with high accuracy in a small 
design space. Quadratic PRS model and RBF model are both suitable 
for local fitting. The quadratic PRS model includes quadratic poly-
nomial (QP) without cross terms and perfect quadratic polynomial 
(PQP) with cross terms [14, 3]. In order to select a more suitable local-
ly surrogate model, three locally surrogate models are reconstructed. 
Three types of multi-level surrogate model are analyzed by adopting 

Fig. 5. Boxplot of absolute error

Fig. 7. The number of function running under different parameter combina-
tions

Fig. 9. Optimization flowchart for multi-level target agent

Fig. 6. Boxplot of RMSE

Fig. 8. Absolute error of optimization results under different parameter com-
binations
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 (a) Local surface graph of original function

 (a) Local surface graph of original function

(c) QP model

(c) QP model

(b) PQP model

(b) PQP model

(d) RBF model

(d) RBF model

Fig. 10. Comparison of local surrogate model

Fig. 11. Robustness comparison of the local surrogate model
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Model II: the first-level globally surrogate model, Kriging model + 
the second-level locally surrogate model, QP model;

Model III: the first-level globally surrogate model, Kriging model 
+ the second-level locally surrogate model, RBF model.

Fig. 10 shows the fitting surface of each local surrogate model at 
the true best point (0,0) 0f =  when the optimization is terminated. 

the multi-level surrogate-based multi-point addition sequence opti-
mization method. The three locally surrogate models are compared 
through the Ackley’s Path test function.

Model I: the first-level globally surrogate model, Kriging model + 
the second-level locally surrogate model, PQP model;

(a) Model I

(a) RMSE

(b) Model II

(b) MAE

(c) Model III

Fig. 12. Robustness comparison of optimization algorithm

Fig. 13. The change of the accuracy of the predicted optimal solution during the iterative process
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From Fig. 10 (a), it can be seen that due to the lack of nonlinear fit-
ting ability of QP model, the fitted surface is quite different from the 
real one, and the fitting effect of PQP model is slightly better than 
that of QP model, but it still can’t fit the surface accurately, which 
indicates that the quadratic PRS model can only simulate the overall 
trend. However, the response surface fitted by the RBF model is very 
close to the real response surface at the minimum peak value, and the 
fitting e0ffect is ideal.

In order to verify the robustness of the three local surrogate models, 
this paper adds Gaussian white noise with a signal-to-noise ratio of 1 
to the test function. After adding noise, the fitted surfaces of each lo-
cal surrogate model are shown in Fig. 11. From Fig. 11, it can be seen 
that the random noise has a significant effect on the fitting effect of 
the PQP model and the QP model, resulting in the surfaces fitted by 
these two models being completely distorted and deformed, which is 
very different from the real surface. However, the RBF model is less 
affected by random noise. Compared with the noise-free RBF model, 
although it is partially concave and convex, the two models are basi-
cally consistent on the whole, indicating that the RBF model has bet-
ter robustness and is suitable for a local surrogate.

Fig. 12 shows the iteration curve obtained by performing 50 groups 
of design optimization for each local surrogate model. Each curve 
represents the average iterative history of each optimization from the 
initial population. Distribution and bandwidth of these curves can re-
flect the dependence on candidate sample groups of using different 
model optimizations. The distribution of the iterative curve of model I 
is messy; the bandwidth of model II is scattered, 8 lines are separated 
from the distribution concentration area; the bandwidth of model III 
is most uniform and narrow throughout the whole iteration process, 
and the average population can converge to 0.01 in each generation, 
which indicates that when using RBF as the local surrogate model 
the multi-level surrogate-based multi-point addition sequence optimi-
zation has the least dependence on the candidate sample group, and 
the optimization result is more accurate. From the above analysis, the 
RBF model is more suitable for the local surrogate model compared 
with the QP model and the PQP model.

In order to verify the advantages of the multi-level surrogate mod-
el, Fig. 13 shows the comparison of the absolute error average of the 
each generation optimal solutions for optimization designs of Ack-
ley’s Path test function. It can be seen from Fig. 13(a) that the single-
level surrogate model and the multi-level surrogate model I~II require 
the average of 9 iterations and converge within 3% error at the same 
time. The multi-level surrogate model III can converge to the same er-
ror with only 6 iterations and the error is within 2%, so that the higher 
solution accuracy is obtained. Fig. 13(b) shows the comparison of the 
RMSE obtained 50 groups of optimization results. The single-level 
surrogate model converges slowly, and the final convergence error is 
the largest. The RMSE error fluctuations of the last few iterations of 
the multi-level surrogate models I and II are more obvious, the error 
is close to 2% after the iteration; the multi-level surrogate model III 
only needs 7 iterations to converge within 2%.

Through the above comparison, it is found that the multi-level sur-
rogate model has faster convergence rate and higher accuracy. There-
fore, this paper adopts the combination of globally Kriging surrogate 
and RBF locally surrogate to perform the reliability-based multi-level 
surrogate design optimization.

5. Multi-Level Surrogate Model Based Reliability Design 
Optimization Method

RBDO is a combination of reliability analysis and optimization de-
sign. It generally has two forms: one is to establish the mathematical 
model of reliability design optimization and seek its optimal solution 
with reliability as the constraint condition and cost, volume and mass 
as the optimization objective [29]; the other is to maximize the prod-
uct reliability under the conditions that guarantee the certain perform-
ance and the economic indicators [10, 19].

Generally, RBDO with reliability as a constraint is more practical, 
and its mathematical model can be expressed as [13]:
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where m is the number of the random variables; Ux  and Lx  repre-
sent the upper and lower variable limits, ( )g x  is the performance 
function; j is the number of performance functions corresponding to 
different failure forms; [ ]rP  and [ ]β  represent specified reliability 
probability and reliability index design value.

In order to solve the problems that the actual objective function and 
structural performance function are difficult to obtain in the reliability 
optimization, the surrogate model technique is applied to approximate 
the objective function and the structural function. The method men-
tioned in section 4 is applied for optimization with the penalty func-
tion as reliability constraint. The construction process of the adaptive 
dynamic penalty function is as follows [4, 25]:

The objective satisfaction function and the constraint satisfaction 
function are applied. When there is a large difference between the 
objective function value and the penalty term, the general penalty 
function cannot effectively distinguish the feasible solution from the 
infeasible solution. The objective function ( )f x  and the penalty term 

( )p x  are used to construct the function, respectively.
Objective constraint function:

 max

max min

( ) [0,1]f f xf
f f

−
= ∈

−
  (9)

Constraint satisfaction function:

 max

max min

( ) [0,1]p p xp
p p

−
= ∈

−
  (10)

where maxf  and minf  are the maximum and minimum value of the 
objective function in the contemporary populations, maxp  and minp  
are the maximum and minimum of the penalty terms in the contempo-
rary population. Obviously, they are both descending functions of the 
range [0,1] , which means ( )f x  and ( )p x  are inversely proportional 
to f  and p , respectively. Therefore, the individual’s fitness is evalu-
ated by objective satisfaction and constraint satisfaction. These two 
functions are employed to define a new penalty function ( )F x :

 F x
f x x D

f x p x x D
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∈
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α ρ1 2 1  (11)

where r t t( ) ( )[( ) / ]ρ α ρ= − −1 2 1  is adaptive dynamic penalty factor; 
ρ  is proportion of feasible solutions for contemporary populations; 
α  is an integer parameter that needs to be adjusted of [1 ,10] ; t  is 
the evolution time. 

The low-dimensional multi-constraint mathematical model is 
taken as a case to verify the feasibility of the method, which can be 
written as:
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shown in Fig. 14(a). The real optimal solution satisfying the reliability 
constraint is (3.439,3.286) , and its corresponding objective function 
value is 6.725. It can be seen from Fig. 14(b) and Fig. 14(c) that the 

1g  and 2g  fitted by the Kriging model with two-point addition strat-
egy is very good. Because of the nonlinearity of 3g  is the strongest, 
the fitting error is slightly larger in [0,2] . Fig. 14(d) shows the fitting 
results of the general Kriging surrogate model, it can be seen that the 
general Kriging surrogate model has  larger deviation from the fitting 
of 2g  and 3g .

The optimization results are shown in Table 4. From Table 4, ObjN  
is the objective function running times, gN  is the performance func-
tion calculating times, Obj gN N N= +  is the total calculation cost. 
It can also be seen from Table 4 that the optimization results of the 
schemes I and II both meet the reliability constraint and the obtained 
reliability values have higher calculation accuracy. The optimal solu-
tion of the scheme I is slightly better than the scheme II. In terms of 
cost, function calculation costs of the scheme I has 59 times shorter 
than the scheme II. For the scheme III, the computation cost is too 
high and due to the poor reliability accuracy results of 1rP  and 2rP  
is less than the value of the specified design [ ] 99.865%rP = . So the 
optimal solution does not meet the reliability constraint.

Fig. 15 shows the optimal solution iteration and the feasible solu-
tion proportion of each generation for each scheme. According to the 
trend of iteration, it can be seen that the small proportion of feasible 
solutions in the initial iteration ensures the diversity of the population. 
With the gradual increase of iterative evolution, mo−−−re feasible so-
lutions enter the population. At the end of the iteration, the increase of 
feasible solutions slows down and tends to be stable. This evolution 
process is reasonable, and it also verifies the effectiveness of adaptive 
penalty function in dealing with reliability constraints.

In general, for the objective function optimization and reliabil-
ity calculation, through the multi-level objective agent optimization 
method and the improved reliability algorithm proposed in this paper, 
the calculation cost can be reduced and the optimal solution obtained 
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where ( )g x is the structural performance function; 1x  and 2x  represent 
the independent variables: 2

1 (3.1,0.3 )x N , 2
2 (2.09,0.3 )x N  .

The RBDO based on multi-level surrogate agent is taken as the 
scheme I, and the schemes II and III are also applied at the same time 
to be compared and analyzed. The three schemes are written as:

Scheme I: Multi-level objective surrogate + improved Kriging re-
sponse surface method based on double-point addition;

Scheme II: Single-level objective surrogate + improved Kriging 
response surface method based on double-point addition;

Scheme III: Multi-level objective surrogate + Kriging response 
surface method.

The local surrogate model in the multi-level objective surrogate is 
RBF model. The relevant parameters are set as λ = 0 7. , 0.01d =  . 
The candidate sample sets number is 100, the number of population 
is 20, the selective probability is 0.95cp = , the mutation probability 
is 0.001mp = , the convergence precision is ε = 0 001. . This method 
uses 15 uniform design points to do initial sampling of the objec-
tive function and performance function. The initial sample points are 
shown in Table 3.

The contour curve of the objective function, the constraint bound-
ary of the performance function, and the real optimal solution are 

Table 3. Initial sample points

Number 1x 2x 1g 2g 3g Objf

1 2.142 9.285 1.131 3.431 −0.046 11.428

2 5.000 8.571 9.714 3.469 −0.188 13.571

3 7.857 7.857 23.252 4.026 −0.382 15.714

4 0 7.142 −1.000 2.206 0.287 7.142

5 2.857 6.428 1.623 1.632 0.238 9.285

6 5.714 5.714 8.329 1.577 −0.040 11.428

7 8.571 5.000 17.367 2.041 −0.324 13.571

8 0.714 4.285 −0.890 1.020 1.010 5.000

9 3.571 3.571 1.277 0.353 0.726 7.142

10 6.428 2.857 4.903 0.204 0.156 9.285

11 9.285 2.142 8.238 0.574 −0.261 11.428

12 1.428 1.428 −0.854 0.353 3.331 2.857

13 4.285 0.714 −0.344 −0.408 1.750 5.000

14 7.142 0 −1.000 −0.650 0.428 7.142

15 10.000 10.000 49.000 7.700 -0.567 20.000
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can be ensured to be feasible. The scheme II adopts the single-level 
target surrogate mode. From the analysis results of the examples, it 
can be seen that the quality of the optimal solution and the calcula-
tion cost are worse than scheme I. In scheme III, the general Kriging 
surrogate model is used to calculate the reliability, resulting in a sharp 
increase in the number of calculation of the performance function. 

Moreover, due to the low accuracy of the reliability algorithm, the 
optimal solution cannot meet all the constraints.

Table 4. Results of RBDO

Scheme Iteration times Calculation cost Optimal solution Reliability MC test relative error %

I 4

ObjN =57 1x =3.447 1rP =0.99872 1rP =0.99883 0.011

gN =175 2x =3.293 2rP =0.99876 2rP =0.99895 0.019

N =232 Objf =6.740 3rP =1.00000 3rP =1.00000 –

II 6

ObjN =77 1x =3.451 1rP =0.99926 1rP =0.99880 0.046

gN =214 2x =3.303 2rP =0.99965 2rP =0.99907 0.058

N =291 Objf =6.754 3rP =1.00000 3rP =1.00000 –

III 5

ObjN =62 1x =3.358 1rP =0.98324 1rP =0.99531 1.213

gN =2950 2x =3.099 2rP =0.98933 2rP =0.99808 0.877

N =3012 Objf =6.457 3rP =1.00000 3rP =1.00000 –

(a) Objective and limit state function

 (c) Scheme II

(b) Scheme I

 (d) Scheme III
Fig. 14. The approximate solution of reliability optimization under schemes I~III
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6. Conclusions
In this work, a genetic-algorithm-based Kriging model using 

multi-point addition sequence optimization strategy is presented for 
the shortcomings of single point criterion in Kriging model sequence 
optimization. The local surrogate model is employed to modify the 
Kriging global surrogate model because of the poor local search per-
formance of Kriging model, which proposed the multi-level surrogate 
model. Finally, a reliability-based design optimization is study com-
bined with multi-level surrogate model and adaptive dynamic pen-
alty function. The proposed approach is not only conceptually more 
understandable and computationally much more convenient, accurate 
and efficient, but also has more application value comparing to the 
traditional method. The contributions of the research work presented 
in this paper can be summarized as follows.

The multi-point addition criterion of genetic-algorithm-based (1) 
Kriging model is studied. The parameter λ  and d which de-
termine the number of final new samples of Kriging model has 
an important effect to the accuracy of the surrogate model. A 
smaller λ  means more sample points will be add to the sample 
database, which can improve the fitting accuracy of Kriging 
model. Besides, when λ  takes different values, the influence 
of d is different. When λ < 0 7. , d has little effect to the model 

accuracy. However, when λ ≥ 0 7.   there is a great influence of 
d on the model accuracy.
It is the first time that a Kriging-based multi-level surrogate (2) 
model is first proposed, and its better convergence and accu-
racy is verified by with the example of Ackley’s Path test func-
tion compared with PQP and QP model.
A multi-level surrogate model based reliability design optimi-(3) 
zation method is provided and employed to solve a low-dimen-
sional multi-constraint mathematical model. The case study 
results show that this method in consideration of the computa-
tion accuracy and efficiency simultaneously, thus avoiding the 
problem of slow convergence caused by the poor search ability 
of traditional methods.
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